CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Inverse Problems for Partition Functions

  Published:2001-08-01
 Printed: Aug 2001
  • Yifan Yang
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $p_w(n)$ be the weighted partition function defined by the generating function $\sum^\infty_{n=0}p_w(n)x^n=\prod^\infty_{m=1} (1-x^m)^{-w(m)}$, where $w(m)$ is a non-negative arithmetic function. Let $P_w(u)=\sum_{n\le u}p_w(n)$ and $N_w(u)=\sum_{n\le u}w(n)$ be the summatory functions for $p_w(n)$ and $w(n)$, respectively. Generalizing results of G.~A.~Freiman and E.~E.~Kohlbecker, we show that, for a large class of functions $\Phi(u)$ and $\lambda(u)$, an estimate for $P_w(u)$ of the form $\log P_w(u)=\Phi(u)\bigl\{1+O(1/\lambda(u)\bigr)\bigr\}$ $(u\to\infty)$ implies an estimate for $N_w(u)$ of the form $N_w(u)=\Phi^\ast(u)\bigl\{1+O\bigl(1/\log\lambda(u)\bigr)\bigr\}$ $(u\to\infty)$ with a suitable function $\Phi^\ast(u)$ defined in terms of $\Phi(u)$. We apply this result and related results to obtain characterizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms of the asymptotic behavior of certain weighted partition functions.
MSC Classifications: 11P82, 11M26, 40E05 show english descriptions Analytic theory of partitions
Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses
Tauberian theorems, general
11P82 - Analytic theory of partitions
11M26 - Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses
40E05 - Tauberian theorems, general
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/