Abstract view
Classification of Simple Tracially AF $C^*$Algebras


Published:20010201
Printed: Feb 2001
Features coming soon:
Citations
(via CrossRef)
Tools:
Search Google Scholar:
Abstract
We prove that preclassifiable (see 3.1) simple nuclear tracially AF
\CA s (TAF) are classified by their $K$theory. As a consequence all
simple, locally AH and TAF \CA s are in fact AH algebras (it is known
that there are locally AH algebras that are not AH). We also prove
the following Rationalization Theorem. Let $A$ and $B$ be two unital
separable nuclear simple TAF \CA s with unique normalized traces
satisfying the Universal Coefficient Theorem. If $A$ and $B$ have the
same (ordered and scaled) $K$theory and $K_0 (A)_+$ is locally
finitely generated, then $A \otimes Q \cong B \otimes Q$, where $Q$ is
the UHFalgebra with the rational $K_0$. Classification results (with
restriction on $K_0$theory) for the above \CA s are also obtained.
For example, we show that, if $A$ and $B$ are unital nuclear separable
simple TAF \CA s with the unique normalized trace satisfying the UCT
and with $K_1(A) = K_1(B)$, and $A$ and $B$ have the same rational
(scaled ordered) $K_0$, then $A \cong B$. Similar results are also
obtained for some cases in which $K_0$ is nondivisible such as
$K_0(A) = \mathbf{Z} [1/2]$.