Abstract view
Orbital Integrals on $p$Adic Lie Algebras


Published:20001201
Printed: Dec 2000
Abstract
Let $G$ be a connected reductive $p$adic group and let $\frakg$ be its
Lie algebra. Let $\calO$ be any $G$orbit in $\frakg$. Then the orbital
integral $\mu_{\calO}$ corresponding to $\calO$ is an invariant distribution
on $\frakg $, and HarishChandra proved that its Fourier transform $\hat
\mu_{\calO}$ is a locally constant function on the set $\frakg'$ of regular
semisimple elements of $\frakg$. If $\frakh$ is a Cartan subalgebra of
$\frakg$, and $\omega$ is a compact subset of $\frakh\cap\frakg'$, we give
a formula for $\hat \mu_{\calO}(tH)$ for $H\in\omega$ and $t\in F^{\times}$
sufficiently large. In the case that $\calO$ is a regular semisimple orbit,
the formula is already known by work of Waldspurger. In the case that
$\calO$ is a nilpotent orbit, the behavior of $\hat\mu_{\calO}$ at
infinity is already known because of its homogeneity properties. The
general case combines aspects of these two extreme cases. The formula
for $\hat\mu _{\calO}$ at infinity can be used to formulate a ``theory
of the constant term'' for the space of distributions spanned by the
Fourier transforms of orbital integrals. It can also be used to show
that the Fourier transforms of orbital integrals are ``linearly
independent at infinity.''