CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Symmetric Tessellations on Euclidean Space-Forms

  Published:1999-12-01
 Printed: Dec 1999
  • Michael I. Hartley
  • Peter McMullen
  • Egon Schulte
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

It is shown here that, for $n \geq 2$, the $n$-torus is the only $n$-dimensional compact euclidean space-form which can admit a regular or chiral tessellation. Further, such a tessellation can only be chiral if $n = 2$.
Keywords: polyhedra and polytopes, regular figures, division of space polyhedra and polytopes, regular figures, division of space
MSC Classifications: 51M20 show english descriptions Polyhedra and polytopes; regular figures, division of spaces [See also 51F15] 51M20 - Polyhedra and polytopes; regular figures, division of spaces [See also 51F15]
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/