Abstract view
The Homology of Abelian Covers of Knotted Graphs


Published:19991001
Printed: Oct 1999
Abstract
Let $\tilde M$ be a regular branched cover of a homology 3sphere
$M$ with deck group $G\cong \zt^d$ and branch set a trivalent graph
$\Gamma$; such a cover is determined by a coloring of the edges of
$\Gamma$ with elements of $G$. For each index2 subgroup $H$ of
$G$, $M_H = \tilde M/H$ is a double branched cover of $M$. Sakuma
has proved that $H_1(\tilde M)$ is isomorphic, modulo 2torsion, to
$\bigoplus_H H_1(M_H)$, and has shown that $H_1(\tilde M)$ is
determined up to isomorphism by $\bigoplus_H H_1(M_H)$ in certain
cases; specifically, when $d=2$ and the coloring is such that the
branch set of each cover $M_H\to M$ is connected, and when $d=3$
and $\Gamma$ is the complete graph $K_4$. We prove this for a
larger class of coverings: when $d=2$, for any coloring of a
connected graph; when $d=3$ or $4$, for an infinite class of
colored graphs; and when $d=5$, for a single coloring of the
Petersen graph.