CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Quotient Hereditarily Indecomposable Banach Spaces

  Published:1999-06-01
 Printed: Jun 1999
  • V. Ferenczi
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

A Banach space $X$ is said to be {\it quotient hereditarily indecomposable\/} if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space $X_{\GM}$ constructed by W.~T.~Gowers and B.~Maurey in \cite{GM}. Then we provide an example of a reflexive hereditarily indecomposable space $\hat{X}$ whose dual is not hereditarily indecomposable; so $\hat{X}$ is not quotient hereditarily indecomposable. We also show that every operator on $\hat{X}^*$ is a strictly singular perturbation of an homothetic map.
MSC Classifications: 46B20, 47B99 show english descriptions Geometry and structure of normed linear spaces
None of the above, but in this section
46B20 - Geometry and structure of normed linear spaces
47B99 - None of the above, but in this section
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/