CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Values of the Dedekind Eta Function at Quadratic Irrationalities

  Published:1999-02-01
 Printed: Feb 1999
  • Alfred van der Poorten
  • Kenneth S. Williams
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $d$ be the discriminant of an imaginary quadratic field. Let $a$, $b$, $c$ be integers such that $$ b^2 - 4ac = d, \quad a > 0, \quad \gcd (a,b,c) = 1. $$ The value of $\bigl|\eta \bigl( (b + \sqrt{d})/2a \bigr) \bigr|$ is determined explicitly, where $\eta(z)$ is Dedekind's eta function $$ \eta (z) = e^{\pi iz/12} \prod^\ty_{m=1} (1 - e^{2\pi imz}) \qquad \bigl( \im(z) > 0 \bigr). %\eqno({\rm im}(z)>0). $$
Keywords: Dedekind eta function, quadratic irrationalities, binary quadratic forms, form class group Dedekind eta function, quadratic irrationalities, binary quadratic forms, form class group
MSC Classifications: 11F20, 11E45 show english descriptions Dedekind eta function, Dedekind sums
Analytic theory (Epstein zeta functions; relations with automorphic forms and functions)
11F20 - Dedekind eta function, Dedekind sums
11E45 - Analytic theory (Epstein zeta functions; relations with automorphic forms and functions)
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/