Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

A lower bound for $K_X L$ of quasi-polarized surfaces $(X,L)$ with non-negative Kodaira dimension

 Printed: Dec 1998
  • Yoshiaki Fukuma
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


Let $X$ be a smooth projective surface over the complex number field and let $L$ be a nef-big divisor on $X$. Here we consider the following conjecture; If the Kodaira dimension $\kappa(X)\geq 0$, then $K_{X}L\geq 2q(X)-4$, where $q(X)$ is the irregularity of $X$. In this paper, we prove that this conjecture is true if (1) the case in which $\kappa(X)=0$ or $1$, (2) the case in which $\kappa(X)=2$ and $h^{0}(L)\geq 2$, or (3) the case in which $\kappa(X)=2$, $X$ is minimal, $h^{0}(L)=1$, and $L$ satisfies some conditions.
Keywords: Quasi-polarized surface, sectional genus Quasi-polarized surface, sectional genus
MSC Classifications: 14C20 show english descriptions Divisors, linear systems, invertible sheaves 14C20 - Divisors, linear systems, invertible sheaves

© Canadian Mathematical Society, 2015 :