Abstract view
Primes in short segments of arithmetic progressions


Published:19980601
Printed: Jun 1998
D. A. Goldston
C. Y. Yildirim
Features coming soon:
Citations
(via CrossRef)
Tools:
Search Google Scholar:
Abstract
Consider the variance for the number of primes that are both in the
interval $[y,y+h]$ for $y \in [x,2x]$ and in an arithmetic
progression of modulus $q$. We study the total variance
obtained by adding these variances over all the reduced residue
classes modulo $q$. Assuming a strong form of the twin prime
conjecture and the Riemann Hypothesis one can obtain an asymptotic
formula for the total variance in the range when $1 \leq h/q \leq
x^{1/2\epsilon}$, for any $\epsilon >0$. We show that one can still
obtain some weaker asymptotic results assuming the Generalized Riemann
Hypothesis (GRH) in place of the twin prime conjecture. In their
simplest form, our results are that on GRH the same asymptotic formula
obtained with the twin prime conjecture is true for ``almost all'' $q$
in the range $1 \leq h/q \leq h^{1/4\epsilon}$, that on averaging
over $q$ one obtains an asymptotic formula in the extended range $1
\leq h/q \leq h^{1/2\epsilon}$, and that there are lower bounds with
the correct order of magnitude for all $q$ in the range $1 \leq h/q
\leq x^{1/3\epsilon}$.