Abstract view
Polynomials with $\{ 0, +1, 1\}$ coefficients and a root close to a given point


Published:19971001
Printed: Oct 1997
Peter Borwein
Christopher Pinner
Abstract
For a fixed algebraic number $\alpha$ we
discuss how closely $\alpha$ can be approximated by
a root of a $\{0,+1,1\}$ polynomial of given degree.
We show that the worst rate of approximation tends to
occur for roots of unity, particularly those of small degree.
For roots of unity these bounds depend on
the order of vanishing, $k$, of the polynomial at $\alpha$.
In particular we obtain the following. Let
${\cal B}_{N}$ denote the set of roots of all
$\{0,+1,1\}$ polynomials of degree at most $N$ and
${\cal B}_{N}(\alpha,k)$ the roots of those
polynomials that have a root of order at most $k$
at $\alpha$. For a Pisot number $\alpha$ in $(1,2]$
we show that
\[
\min_{\beta \in {\cal B}_{N}\setminus \{ \alpha \}} \alpha
\beta \asymp \frac{1}{\alpha^{N}},
\]
and for a root of unity $\alpha$ that
\[
\min_{\beta \in {\cal B}_{N}(\alpha,k)\setminus \{\alpha\}}
\alpha \beta\asymp \frac{1}{N^{(k+1) \left\lceil
\frac{1}{2}\phi (d)\right\rceil +1}}.
\]
We study in detail the case of $\alpha=1$, where, by far, the
best approximations are real.
We give fairly precise bounds on the closest real root to 1.
When $k=0$ or 1 we
can describe the extremal polynomials explicitly.