CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Sweeping out properties of operator sequences

  Published:1997-02-01
 Printed: Feb 1997
  • Mustafa A. Akcoglu
  • Dzung M. Ha
  • Roger L. Jones
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $L_p=L_p(X,\mu)$, $1\leq p\leq\infty$, be the usual Banach Spaces of real valued functions on a complete non-atomic probability space. Let $(T_1,\ldots,T_{K})$ be $L_2$-contractions. Let $0<\varepsilon < \delta\leq1$. Call a function $f$ a $\delta$-spanning function if $\|f\|_2 = 1$ and if $\|T_kf-Q_{k-1}T_kf\|_2\geq\delta$ for each $k=1,\ldots,K$, where $Q_0=0$ and $Q_k$ is the orthogonal projection on the subspace spanned by $(T_1f,\ldots,T_kf)$. Call a function $h$ a $(\delta,\varepsilon)$-sweeping function if $\|h\|_\infty\leq1$, $\|h\|_1<\varepsilon$, and if $\max_{1\leq k\leq K}|T_kh|>\delta-\varepsilon$ on a set of measure greater than $1-\varepsilon$. The following is the main technical result, which is obtained by elementary estimates. There is an integer $K=K(\varepsilon,\delta)\geq1$ such that if $f$ is a $\delta$-spanning function, and if the joint distribution of $(f,T_1f,\ldots,T_Kf)$ is normal, then $h=\bigl((f\wedge M)\vee(-M)\bigr)/M$ is a $(\delta,\varepsilon)$-sweeping function, for some $M>0$. Furthermore, if $T_k$s are the averages of operators induced by the iterates of a measure preserving ergodic transformation, then a similar result is true without requiring that the joint distribution is normal. This gives the following theorem on a sequence $(T_i)$ of these averages. Assume that for each $K\geq1$ there is a subsequence $(T_{i_1},\ldots,T_{i_K})$ of length $K$, and a $\delta$-spanning function $f_K$ for this subsequence. Then for each $\varepsilon>0$ there is a function $h$, $0\leq h\leq1$, $\|h\|_1<\varepsilon$, such that $\limsup_iT_ih\geq\delta$ a.e.. Another application of the main result gives a refinement of a part of Bourgain's ``Entropy Theorem'', resulting in a different, self contained proof of that theorem.
Keywords: Strong and $\delta$-sweeping out, Gaussian distributions, Bourgain's entropy theorem. Strong and $\delta$-sweeping out, Gaussian distributions, Bourgain's entropy theorem.
MSC Classifications: 28D99, 60F99 show english descriptions None of the above, but in this section
None of the above, but in this section
28D99 - None of the above, but in this section
60F99 - None of the above, but in this section
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/